

Research activities at Vienna University of Technology on promotion of Renewables and decentralised energy supply

Reinhard Haas, Amela Ajanovic

Energy Economics Group,Vienna University of Technology

Fonergy Method of approach TU rechnische Liniversity

► Starting from an energy-economic assessment of decision-making for purchasing energy services:

$$S = E \eta(T)$$
 $S = f(Y, p_s, WTP(s))$

► Modeling dynamic processes based on technological learning, cost resource curves of potentials and policy measures

Combing bottom-up (technical) modeling with top-down (econometric) analyses

Major research areas

Electricity from RES

Liberalisation & (re-)regulation of electricity markets

Heat from RES (incl. buildings

Alternative fuels & automotive systems

SUPPLY

DEMAND

SURVEY

- 1. Introduction mission / research focuses
- 2. Liberalised vs regulated electricity markets
- 3. Promotion of renewables for electricity & heat
- 4. Promotion of alternative fuels and alternative automotive systems in transport
- 5. Outlook

Energy conomics 1. Mission statement

- > Our current standard of living all goods and services we enjoy - is based on the consumption of energy
- > However, this system is currently not sustainable. Renewable energy sources as well as more efficient and more careful ways to use energy are cornerstones in converting our economy into a sustainable system
- > The objective of the EEG is, to contribute significantly to this process

2. Liberalised vs regulated electricity markets

- Major objective of liberalisation of ESI in Europe: lead to ONE European electricity market
- Core motivation:
 LIB → Competition! → lower prices!

1. INTRODUCTION

Average wholesale electricity price 2007 [€/MWh]

1. INTRODUCTION

2007: Slow convergence of spot prices?

1. INTRODUCTION

At some times convergence of spot

2. THE "EU-4" MARKET

Trends in generation capacities and load:

Variations and uncertainties in available capacities play a

Energy 3. MARKET INTEGRATION Group

Energy 3. MARKET INTEGRATION Froup

Comparison of price effects:

Are "new" countries really long?

FRANCE, GERMANY, AUSTRIA – ONE MARKET

FRANCE, GERMANY, AUSTRIA, CZECH REPUBLIC, POLAND – ONE CONVERGING MARKET?

Energy 3. MARKET INTEGRATION

Hypothetic price effects by integrating

Price reduction of 4% in the considered period – How

3. PROMOTING RENEWABLES FOR ELECTRICITY **AND HEAT**

PROMOTING RENEWABLES FOR ELECTRICITY GENERATION CORE MOTIVATION:

Policy targets for an INCREASE of RES-E!

e.g. 20/20/2020 targets

RES-E directive: increase share of RES-E from 12% 1997 to 22% in 20180)

EU RES targets for 2020: TU

TECHNISCHE UNIVERSITÄT WIEN

REMARK ON RES – DEPLOYMENT IN THE EU-COUNTRIES

- Since about 1997 triggered by EUdirectives and EU initiatives
- Yet, specific country success stories very strongly related to national policies design!
- Moreover, current harmonisation efforts not necessarily towards most effective and efficient policies!

Wind in EU-27: Installed capacities per year

Heat from renewables in EU-27

Main support instruments: Subsidies and income tax incentives for biomass boilers and solar thermal collectors

SURVEY ON STRATEGIES TECHNISCHE UNIVERSITÄT WIEN FOR PROMOTING RENEWABLE ENERGY

		REGULATORY	VOLUNTARY
Capacity- driven strategies	Generation-based	GO-Trade	National generation targets
	Investment focused	Bidding/Tendering	 National installation or capacity targets
Price- driven strategies	Generation-based	feed-in tariffs,late based incentivesNet metering	 Green Power Marketing Green tariffs Solar stock exchange
	Investment focused	RebatesSoft loansTax incentives	ContractingShareholder progr.ContributionBidding
Other		_	 NGO-marketing Selling green buildings Retailer progr. Financing Public building progr.

MAJOR PROBLEM:

Correct design of policy

- with respect to:
- which targets to be reached when?
 - Financial incentives
 - Credibility for investors
 - costs for customers

THE ISSUE OF TRANSFER COSTS

All regulatory promotion schemes (Quota-based TGC systems, tendering systems, Feed-in tariffs) create an artificial market

and cause

transfer costs (additional costs)

How to minimise transfer costs

Minimise additional costs for consumers = Producer

Surplus + Generation costs - Revenues electricity market

Transfer costs vs avoided costs

Example: Promotion of wind in Germany 2005

Source: Krewitt/Schlomann: Externe Kosten ... (2006)

The lower the additional costs (=transfer costs) are which have finally to be paid by electricity customers

the higher will be public acceptance

the larger will be the amount of additional electricity generated from RES.

>>The "policy" track << Evolution

>>The track on "RES-E grid integration" <<

SUCCESS OF STRATEGIES

Major objectives:

 increase the amount of electricity from renewables and

reduce costs!

MW /Number of plants

(=effectiveness)

PRICES OF CERTIFICATES

IMPACT OF THE SHAPE OF THE COST CURVE

IMPACT OF THE SHAPE OF THE COST CURVE

THE SHAPE OF THE COST CURVE E U - 27

CONCLUSIONS (1)

IMPROVE/OPTIMIZE THE CURRENT SYSTEMS BEFORE HARMONISING OR IMPLEMENTING **MAJOR CHANGES!**

deployment fastest and at lowest costs for society. We expect GO Trade to be a very expensive way to promotes RES

CONCLUSIONS (2)

- Instead of harmonisation: Stimulate/Foster competition between promotion schemes/between countries: Which system/where provides new RES-E capacities at lowest costs for society?
- Exchange of lessons learned: Improvement of strategy design must build on lessons learned
- Promoting RES in EU successful? Yes, but increase in energy consumption outweighed ...
- For sustainable policy -> parallel focus on demand-side conservation of high priority!
- Supporting RES? Yes, but ... externality-based taxation of all energy carriers preferable!

Reinhard.Haas @ tuwien. ac4at

Deriving effective least-cost policy strategies for alternative automotive concepts and alternative fuels

(ALTER-MOTIVE)

www.alter-motive.org

Amela Ajanovic, Reinhard Haas

- Coordinator:
- EEG, Vienna university of Technology

• Partners:

- Stichting Energieonderzoek Centrum Nederland, The Netherlands
- Eni Corporate University S.P.A., Italy
- BSR Sustainability GmbH, Germany
- Wuppertal Institut für Klima, Umwelt, Energie GmbH, Germany
- AEOLIKI Ltd, Cyprus
- Black Sea Energy Center, Bulgaria
- Association Rhônalpénergie-Environnement, France
- Centre for Renewable Energy Sources, Greece
- Stowarzyszenie The Kraków Institute for Sustainable Energy, Poland
- Chalmers Tekniska Högskola Aktiebolag, Sweden
- Forschungsgesellschaft Mobilität-Austrian Mobility Research, Austria
- Sociedade Por Quotas CEEETA-ECO, Portugal
- Det Økologisk Råd (EcoCouncil), Denmark

• Duration:

1 October 2008 - 30 April 2011

- The core objective is to derive effective least-cost policy strategies to achieve a significant increase in innovative alternative fuels (AF) and corresponding alternative more efficient automotive technologies (AAMT) to head towards a sustainable individual & public transport system.
- The heart of this project is an investigation of about 80 recently implemented successful case studies of pilot projects for marketing AF & AAMT from all over Europe and beyond.
- Furthermore, prospective scenarios on the future deployment of AF & AAMT will be developed, showing how to meet EU targets with least-cost for EU citizens based on efficient & effective policy mixes.

.

WTW

- ✓Fuel costs (€/I)
- ✓ Investments costs (€/vehicle)
- ✓ Mobility costs (€/km)

Economic analysis

$$C(x) = a \cdot x^{-b}$$

C(x): Specific cost

x: Cumulative capacity

b: Learning index

a: Specific cost of the

first unit

$$p = 2^{-b}$$

P: progress ratio

Technology learning curves

Economic analysis

Biofuels costs (BFC):

$$BFC = FC + ACC - Sub$$

Net feedstock costs:

$$FC = FP - ASub - C_{by-product}$$

Average gross conversion costs:

$$ACC = CC + O \& M$$
$$CC = SC * CRF$$

Cost structure of bioethanol

Total vehicle costs:

$$IC = IC^{CON} + IC^{INNOV}$$

The total transport costs:

$$TC = FC + IC_{sp}$$

$$IC_{sp} = (\alpha \cdot (IC + NOVA) \cdot (1 + VAT)) / D_{km}$$

The fuel cost per kilometre:

$$FC = EC \cdot FP$$

Thank you!

ajanovic@eeg.tuwien.ac.at

www.eeg.tuwien.ac.at

www.alter-motive.org